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Abstract 

In this paper we examine a natural language processing and machine learning approach to help assess the quality 
of railway hazard logs. The focus is on highlighting red flags in the hazard log content to help improve the accuracy 
and quality of the contents and so the speed of risk reviews. Data is presented that indicate the approach has 
potential for significant savings in time and increased quality. The tool is one of a number that we are developing 
as part of an initiative to improve rail system development and operation by employing artificial intelligence (AI) 
to augment existing methods in the context of a wider system engineering approach. This will in turn lead to rail 
systems becoming more sustainable and resilient. 
 
 
Keywords: Natural Language Processing; NLP: Machine Learning; Railway Safety; System Engineering, 
Artificial Intelligence 
 
 

                                                           
* Parkinson, H.. Tel.: +44 (0)7803 581 849.  

E-mail address: hjparkinson@digitalrail.co.uk 



 

Parkinson, H. / TRA2018, Vienna, Austria, April 16-19, 2018 

 

 

 

1. Introduction 

Many projects end up in trouble because they have not followed recognised systems engineering processes, as described by 
Elliot [2014] and this is indeed the main reason for having system engineering; it provides management with timely 
information regarding the health of a project. Although projects are normally set up to follow these processes, during 
delivery, drift in the day-to-day activities tends to result in a gradual migration to a state of non-compliance. The wider 
objectives of this research are to help identify any drift to non-compliance by applying Natural Language Processing (NLP) 
and Artificial Intelligence (AI) methods to the systems engineering lifecycle to monitor adherence to standards and best 
practice, in this case a railway safety hazard log. The idea behind the project is in essence to have intelligent actors 
monitoring system development process which will enable early insight into how well the project is on course in terms of 
requirements, safety, gate reviews and validation, for example. 

1.1. System engineering and requirements engineering 

The use of AI in systems and software development has not been widely explored; however, the consensus is that it provides 
the best opportunity particularly in managing and augmenting the system development processes, Sommerville (1994). 
Problems usually arise in complex system development when the amount of textual data that the company must process 
becomes too large. The volume and variety of the data increases even further as the need for collaboration grows, and with 
it comes the difficulty of managing the content, keeping up the text readability, the standard format and model consistency. 
 

Figure 1. (a) Lifecycle management and watch-dog functionality, (b) Risk assessment process [4] 

Figure 1(a). represents the idea of having an intelligent watchdog function during the entire lifecycle, using a   combination 
of techniques such as neural networks and decisions trees for example, see Parkinson and Bamford (2016). There are 
workflow tools under development that seek to facilitate the management and control of compliance against safety standards 
such as EN50216-1 (1999), assuring the lifecycle compliance of developments against the requirements from the standard, 
Kristen and Althammer (2015). Their particular approach uses the IBM Rational Doors system engineering / requirements 
management tool as the backbone of the approach as depicted in Figure 1(a). One approach would be to plug in Application 
Programming Interfaces (APIs) such as the one we have developed in this paper into this type of architecture. 
 
Some useful research has been carried out over the years to identify and quality check good requirements, for example 
Carlson et al (2014) who sought to check the quality of requirements within NASA and describes a set of metrics used to 
assess requirement documents. Requirements are deemed to be the description of system behaviors, without specifying how 
they should be accomplished. The NASA ARM tool combined multiple methods such as simple text mining and various 
quality metrics to devise a toolset based on the philosophy above.  
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Also, the shallow knowledge analysis toolset described by Sawyer at al (2005) was devised to acquire knowledge about a 
new problem domain and help human experts to recover requirements in a legacy software scenario. This study involved 
performing on text corpus various statistical language engineering techniques. In particular, frequency profiling, part-of-
speech analysis, collocation analysis and semantic tagging were combined to extract named entities, domain terms, norms 
and business rules from a set of different source documents.  
 
NLP is a technique that is not widely used in the rail industry, and there is therefore an opportunity to apply it to the critical 
systems engineering areas such as requirements and hazard log development and management. Previous work by Syeda 
(2016) examined how NLP could be used to examine accident reports and look for clusters and correlations that could help 
to ensure that future heightened risk situations might be spotted more easily and this paper builds upon that research.  NLP 
is being applied more widely in other domains such as social media, machine translation and advertising. The development 
processes for complex engineering systems offer great scope for its application. For example, if one looks through the 
railway safety and reliability standards, EN50126 -1 (1999) and the recommended activities at each life-cycle stage it will 
be seen that nearly all the items are data driven. Using NLP, Big Data and Machine Learning (ML) a lot of the compliance 
checking activities undertaken by currently safety engineers could be eliminated.  

1.2. Railway safety and hazard Logs 

Safety is one of the most important aspects in the railway industry and is an integral part of the railway system engineering 
process. Not only is it necessary, the process of managing and delivering safety is complex and costly, and hazard logs play 
a vital role in both system engineering and risk assessment. Documents of this type are passed around various departments 
and are used extensively to manage system risks. For example, hazard logs can originate from accident reports or 
brainstorming sessions, their main use being to record system-wide or subsystem risks. 
 
Usual practice involves manually analyzing the documents to identify the root causes of the accidents, finding the hazards 
related to such causes (i.e. defining new or identifying existing conditions that could lead to the accident sequence), ranking 
the priorities of the hazards, devising safety requirements to help mitigate high risk hazards. Due to the complex nature of 
railway systems, high levels of interdisciplinary collaboration and system knowledge are required to complete this type of 
analysis to ensure safety risk is being appropriately managed.  
 
Safety analysis processes involve constantly recording and assessing past accidents, finding the root causes and escalation 
scenarios. Risk assessments comprising risk analysis, evaluation and acceptance is the process used to address the 
identification of accidents and hazards, quantification of risks and the judgment on the tolerability of risks [4]. The steps 
also involve analysis of the causal analysis of hazards. Hazard logs play an important role in this process. Figure 1(b) shows 
a typical flow chart of the risk assessment process taken from EN50126-2 (2007) which also provides the following 
definitions used in the process:  
 
 Hazard Log: “the document in which hazards were identified, decisions made, solution adopted and implementation 

status are recorded and referenced”. 
 Hazard: “a “condition that could lead to an accident”. 
 Cause: the initiator for an accident sequence. 
 Consequence: also known as Effect or Potential Accident. These represent unintended events that are harmful to hum, 

property or environment. 
 Mitigations: measures and actions taken to lower hazards to tolerable levels. These could be safety requirements that 

needed to be implemented in the system. 
 
Section 2 describes some of the data processing techniques used in NLP. Section 3 describes the NLP data and associated 
methods and the categories of content to assess quality. In section 4 an evaluation of the tool is made and results presented. 
The discussion in section 5 provides a look at the results in a wider context and makes conclusions, with the directions for 
further work clearly identified. 

2. Machine learning & NLP techniques 

The following is a summary of some of the existing techniques that can be used to analyse textural content. 

 Text Classifications. Text classification is a subset of supervised learning, which involves using training data that has 
already been labeled by human experts. The goal is to achieve accurate classifications on new text, Manning, Raghavan 
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and Schutze (2008). This technique was applied in various situations that required categorization of a piece of text. For 
example classifying financial reports into different headers (chairman statements, governance reports, etc.) Alves et al 
(2016) or sentiment classification of movie reviews, Pang et al (2002). For this project, we used text classification on 
short, sentence-length texts instead of the whole document text.  

 Bag of Words. For machine learning to work on textual data, the text must be represented in the form of numerical 
features. Bag of words is a common method of word featurization, Manning, Raghavan and Schutze (2008). In short, a 
document is represented by a list of non-ordered frequencies, which contain all the terms in that document. The frequency 
could be calculated for single word or a pair of words (bi-gram), three words together (tri-gram) or more (N-gram). By 
representing a text document by a list of term frequencies, further machine learning techniques can be applied to the 
document using this numerical data.  

 Term frequency-inverse document frequency. Term frequency (tf) metric is simply computed by calculating the frequency 
of all words in a document.  This is not helpful when we want to compare different documents from the same domain. 
Two documents about industrial safety would most likely have similar high frequency terms, such as; ‘safety’, ‘hazard’, 
regardless of what industry these documents are related to. In order to reduce the effect of keywords that appear very 
frequently in the domain, the technique of term frequency-inverse document frequency (tf-idf) was introduced [8]. This 
involves calculating the inverse document frequency, which represents how important a term is in a class of document, 
or how rare it is across different classes of documents. 

 Word Vector. Vector space models    take the analysis a step further, by representing a text document as a data structure, 
Mikolov et al (2013). This is created by applying a term weight to an extracted document’s  bag of words.  One such term weight 
can be that terms tf-idf. In other words, this model represents a document with a feature vector, where the features are the 
terms’, Mikolov et al (2013).  

3. Data and methods 

A list of quality metrics have been compiled that deal with the identification of red flags or green flags from individual cell 
texts within a hazard log, i.e. finding the bad or good indications from the texts. The overall quality of the document was 
not assessed. This was due to the differences in models and format standards of the provided data, which made it difficult 
to generalize a solution for any type of hazard log. For example, the whole-document metric noted in the NASA requirement 
checking tool ARM was document readability, Carlson and Laplante (2014). This can be measured by different grade level 
indices e.g. the Flesch-Kincaid grade level index. Textual data in the hazard logs analyzed here, however, was in the highly 
technical class, therefore such metrics would not be particularly helpful. 
The quality metrics identified in this project are noted in the following sections. 

3.1. Lack of safety impact 

To focus a risk assessment effort on the most significant hazards, a preliminary hazard analysis should be performed to rank 
the hazards in order of their risk. To rank the hazards, a safety impact is required. For this metric, a term frequency-inverse 
document frequency was performed on the Effect column in the provided datasets. The output was a set of keywords that 
appeared in the Effect column at a higher frequency than the other columns. The items that represented an accident or safety 
issue were selected and cross checked with a commonly used standard railway safety guide [4]. These included words such 
as those shown in Table 1 below: 

             Table 1:  Typical Rail Accidents 

   

Injury Shock  

loss of life electrocution  

collision 

fall 

trap 

burn 

crush 

 

 

3.2. Multiple clauses 

Multiple clauses were flagged red if the cell text included more than one sentence and split by various punctuation marks, 
such as full-stops. 
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3.3. Standard list of items 

For this item and associated red flag, a standard list of predefined items was used to represent terminology present in safety 
standards and best-practice risk documentation. Input cell text was compared with exact sentences in this in this list of items. 
Checking for sentence similarity in terms of semantics, did not help in enforcing a writing style in the documents and so the 
simpler rule was used. Also, for large documents, a sentence similarity check would significantly slow down the analysis, 
and would defeat the purpose of providing a quick quality check. 

3.4. Mixed up content 

To identify texts that were likely to belong to another header, we used cleaned hazard logs as training data. Their columns 
in the files were used as the ‘correct’ answer in header classification. The Weka toolkit was used for this task. The input 
texts were first converted to word vectors, Frank et al (2016). The n-gram size was set to 1, and only the top 100 words were 
kept. The Snowball stemmer was used to reduce the words into their root forms, Porter (2001). This ensured words like 
‘injuries’ and ‘injury’ have the same weighting during training. Using Naive Bayes techniques and the above settings, we 
achieved an accuracy of 90.9% on the training data set. Table 2 showed the accuracy in more detail. 

             Table 2: Accuracy by class. 

Class Precision  Recall 

Cause 0.867 0.845 

Effect 0.974 0.968 

Hazard 

Mitigation 

0.829 

0.971 

0.86 

0.967 

3.5. Ambiguity 

As a proof of concept to check the reliability of this red flag identifier, an Ambiguity classifier was trained based on the 
experiment 2 results. Two experiments were conducted using experts to assess randomly chosen cells from the hazard logs. 
These are fully described by Ngo (2017) but are briefly described in the box below.  
 

In Experiment 1, the experts were asked to label single cells randomly chosen with no context as to whether 
they were hazards, cause, accidents or mitigations. Mitigations were accurately determined, with hazards being 
the most difficult to accurately determine, i.e. the consensus between the experts was lower. In Experiment 2, 
the actual hazard chain was shown with columns, hazard, cause, accident, and mitigation headings all present. 
One cell was highlighted by the NLP method. The expert was required to assess the cell against the following 
criteria 

 Is Ambiguous : as an attempt to gather further opinions on this potential red flag. We wanted to see if the 
experts can point out ambiguous items, with their whole hazard entries provided. 

 Is Lack of details : like above, we want to find cells that are lacking details. 
 Is in wrong header : an attempt to measure the agreement on header classification again, now with extra 

information  provided. 

As might be expected in the second experiment the agreement between experts was high given the increased 
context. The idea was to look for agreement between the automated method and the expert. This showed that 
the experts had most problems spotting the ambiguity than the other two criteria. This is probably driven by the 
different the view points of the experts but will be an interesting subject to further research. 

 
The training data was taken from the manually labeled texts that were either marked “Is Ambiguous” or “Is Lack of detail” 
by either expert rater. One expert’s idea of Ambiguity may, however, be different from another expert’s view. The idea was 
to pool different opinions to build a simple ambiguity detector. 127 instances were used to train this classifier. The choice 
of technique was Naive Bayes which works better with small data sets. Other settings were the same as the Header classifier 
mentioned above. The overall accuracy was 88.98%. However, the result was not strong, as shown in Table 3. The recall 
for Ambiguous texts was only 0.5. Although Ambiguity is certainly challenging to spot automatically, it was still included 
in our analysis.  
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            Table 3: Accuracy by class. 

Class Precision l Recall 

Ambiguous 0.786 0.5 

Non-ambiguous 0.903 0.971 

3.6. Weak Phrases 

A more reliable way to spot Ambiguous cell texts was to check for weak keywords. Part of this list came from the NASA 
ARM tool, Carlson and Laplante (2014). The ARM tool defined weak phrases as words and phrases that introduced 
uncertainty to requirement statements. These keywords are then used to represent some level of ambiguity in the technical 
documents. As requirement statements are also a part of hazard logs, it made sense to utilize these in the analysis. The list 
of weak phrases from ARM were added to using some generated by performing term frequency-inverse document frequency 
(tf-idf) on the texts that were marked as ambiguous by the experts. Certain domain terms and inappropriate phrases were 
removed, while the rest was added to ARM’s list of weak phrases as shown in Table 4. Weak phrases included: 

              Table 4: Weak Phrases 

   

Adequate Normal  

As appropriate Provide for  

Be able to 

Capability to 

Capability of 

Effective 

As required 

Easy to 

Incompatible* 

Inaccurate* 

Proper* 

 

 

 
The last three items with an asterisk ‘*’ were identified from experiment 2 (see section 3.5), while the others were referenced 
from, Carlson and Laplante (2014).  An example of keywords which did not make it on to this list include; ‘cctv’ which was 
simply a domain term that was most likely in the ambiguous texts by chance, and ‘direction of travel’ which got to the top 
of the tf-idf (term frequency-inverse document frequency) list because multiple items in the data set contained these phrases 
and they occur with ‘incompatible’ in front of them. Some keywords identified by tf-idf were there just because they co-
occurred with the actual weak phrases, rather than being weak themselves. However, only using 127 items in the experiment 
quite limited the accuracy of this analysis. 

3.7. Other quality metrics using Keywords 

Besides the identification of weak phrases, the NASA ARM tool also provided other quality indicators tailored for 
requirement statements. As a hazard mitigation could be treated as a requirement, these metrics were included in the analysis. 
 
 Imperatives: command words that stressed the necessity of the requirement, for example: shall, must, etc. 
 Directives: words that strengthened the mitigation by directing extra information in the cell. These keywords were 

considered green flag in this project. 
 Continuances: like Directives, these words indicated more detailed specifications following a requirement. Like 

Directives, the Continuances were ‘good signs’ of a Mitigation cell. Examples include: ‘listed:’, ‘as follows:’. 
 Options: indicators of a loose specification that should not be used in requirements or mitigations. Examples include: 

‘may’, ‘can’. 

4. Evaluation and Results 

To evaluate the tool, a separate data set not used during the model learning and keyword analysis was acquired. The analysis 
was performed by the tool and the results exported. The data set had 300 rows, representing the hazard log entries. There 
are 1200 cells in total, as each row has 4 standard columns that are analyzed by the tool. 325 cells contained missing data; 
this is a high number and was marked as a red flag. In this hazard log many of them belonged to the Mitigation column, 
probably indicating this log was likely to be in an early phase of development where most of the hazards identified have not 
yet been fully analyzed 
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Figure 2 shows the output charts visualizing the distribution of red flags across the headers. In particular Figure 2a offers a 
quick overview of the document’s quality. Each row in the hazard log had its total count of red flags calculated. The 
document was then divided into categories depending on the number of red flags a row had. For example, 42% of the rows 
had 4 or more red flags, which is almost half of the data set, indicated by the red sections in the pie chart. Figure 2c provides 
a little more insight; by listing all types of red flags found in the document e.g. the Ambiguity category had 108 instances, 
across the 1200 cells. This chart also shows where the red flags are located, in terms of the column that the cell belongs to. 
For example, “LackImperatives” is a red flag that only exists in the Mitigation column, while “MultipleClauses” can be 
found in any column, and is shown as a stacked bar in the chart. 

 Table 5: Wrong red flags indicated. 

Red flag Identified  

 

Wrong 

 

Percentage of  

False Positive  

All Red Flags 589 26 4.4% 

Multiple Clauses 

Mixed Header 

51 

46 

12 

11 

23.5% 

23.9% 

Has Weak Phrases 109 3 

 

2.75% 

 
The analysis results were then exported as a spreadsheet. This was a filtered version of the original input hazard log, 
containing only the columns that are believed to indicate the standard headers, and the red flags attached to each row of the 
file. This was then evaluated by the experts in terms of accuracy of the assessment. The people asked to evaluate the results 
were not involved in production of any data sets used in this analysis thus avoiding biases in their feedback. The experts 
were asked to evaluate each red flag by: checking if it was appropriate for the cell or not, providing feedback on missed red 
flags and providing additional comments about the analysis result. In summary, out of the 589 red flags identified, 26 were 
marked as inappropriate, in other words, they were false positives. Table 5 shows the distribution of the wrongly identified 
red flags. 
 
Surprisingly, while seemingly a straightforward method of checking and implementation, our “MultipleClauses” red flag 
identifier contributed a high percentage of false positives. From the feedback comments and checking the actual data points, 
it was found that many of the instances marked as “Multiple Clauses” were due to extra text that provides the context. Other 
cases included context sensitive text. For instance, a Cause cell might provide the reason why part of the system broke 
down, with a high level view. Such cells were marked as having a red flag, while in truth they were acceptable. An example 
of this is the piece of text ‘Error in Train Routing Plan. Chosen route unsuitable for train (planning error)’. While the 
program flagged multiple sentences as an issue and suggested the user split them up, the cell with this text was fine, and did 
not need to change. 
 
The “MixedHeader” red flag identifier worked by classifying the cell text’s header, then comparing it with the actual column 
that the cell belongs to. 11 of the 46 instances of this red flag were deemed inappropriate by the marker. In the evaluation 
data set, the cell was fine and the header does not need to be changed. The marker only pointed out the cells that are in the 
correct header but was identified as having a red flag. There was no case where both the classified header and the actual 
header were wrong. 
 
A few “HasWeakPhrases” instances were marked wrong due to the context that those phrases appear in. This is a common 
issue when working with keywords found by calculating term frequency-inverse document frequency, since it does not 
capture semantics and co-occurrences, for instance, compound words that are already in the industry terminology. One 
keyword that was looked for was ‘normal’, so a cell with ‘normal operation’ was identified as having a weak phrase. This 
was not the case, since ‘normal operation’ belongs to the vocabulary that is used widely by the experts, so there’s no real 
ambiguity. 
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Figure 2: Analysis Dashboard (a) Distribution of red flags count per row (b) Red flags distribution across the headers (c) Red flags distribution across 
different categories 

5. Discussion and Conclusions 

This project used railway industry hazard log safety documents as data sets for evaluation. Such data is not easily available 
online or from open source projects. The documents were sourced from a number of projects and contained a range of 
different formats, models, standards, and even languages. Even though all three of the provided hazard logs were in Excel 

(a) 

(c) 

(b) 
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spreadsheet format, there were few other similarities in their structures. The files contained a myriad of sheets, headers and 
layers of information. One difficulty arose from the usage of linked tables.  
 
Understandably, to enforce a writing standard and keep the hazard log organized, one of the files defined a set of standard 
Causes, Effects and Mitigations, and only used their ID in the actual Hazard log sheet. This is useful for the user to work 
with these files, but it posed a challenge as it was only used by one of the projects resulting in development of a case specific 
interface to allow automatic analysis of the text.  
 
Similarly, to this formatting issue, different logs may use different hazard models. For instance, a hazard can be linked to 
multiple Causes, Effects, and Mitigations; however, one possible model could be that the Causes, Effects and Mitigations 
are completely unrelated, as shown in Figure 3a. In other words, each entry had the Hazard at its core item, while multiple 
other cells were just merely related to it. This went against the view that a hazard entry should be related to a whole accident 
sequence, which contains one Cause, one Effect, and one Mitigation, as illustrated in Figure 3b. The difference being, in 
Figure 3b the hazard log reader would know which Cause and Effect are linked together and it should form a sensible 
accident sequence. While in Figure 3a we only know a set of Causes are related to a set of Effects, without a simple way to 
extract the sequence. Again, this difference made it hard to set a general way to extract information from any hazard log. 
 

 

 

Figure 3: Different hazard log entry models (a) Spider model (b) Line by line model 

Given these difficulties, it was assumed that hazard logs in general have a reasonably standardized input. Meaning the input 
spreadsheet should have only one line at the top denoting the columns in the hazard log. The number of columns, their 
names and the cell content are not assumed to be standardized. With these assumptions in mind, a tool was built that could 
quickly provide feedback on the relevant texts within the input hazard log. Using available classification models, the tool 
could process a large amount of hazard log entries in a short time. e.g. for the sample with 300 rows, it took around 3 seconds 
to analyze and visualize the results. 
 
The tool identified red flags, as well as where they occur, i.e. which column contains the most red flags, and what categories 
they are assigned to. Results from the evaluation of a sample hazard log in shown in Table 5, indicated that 563 out of 589 
red flags, or 95.6% being correctly identified. We have developed some hazard log quality indicators by combining 
background research, gathered feedback from the domain expert, and performing data explorations and experiments. These 
quality indicators have been shown to perform well against a manual evaluation on a sample data set.  
 
In summary, the new software described here succeeded in quickly providing feedback on an input of hazard log textual 
data. A wide range of red flags categories could be identified in each text cell of the hazard table with high precision. This 
would help readers assess the overall quality of the hazard log document, as well as getting an idea on what red flags are 
prevalent in the document. Such a tool is not known to be used in the railway safety field presently, so it is hoped that this 
work has provided some additional insight into how hazard log quality can be improved. Even though the tool was not yet 
integrated and usable in the industry scale, it provided a proof of concept on how such toolsets can be developed and applied 
in the risk assessment process within the railway industry. 
 
Future work will involve refining and extending this tool to deal with application at different levels in the system hierarchy 
and to enable it to work autonomously as the railway project is in progress. We are also looking at developing other AI tools 
that can be plugged into the system lifecycle, for example to autonomously monitor for heightened risk levels on the 
operational railway. Another area we are exploring is how NLP and machine learning can be exploited in the providing of 
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verification and validation evidence for safety critical systems. The overall aim is to develop a suite of resilience tools to 
enable the railway to be safer and more efficient and less wasteful. Training these types of NLP methods to assess data has 
provided a glimpse into the future of work in the systems engineering arena. 
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